

Chemoselective Knoevenagel reaction as a novel route for the synthesis of biscoumarinyl methylsulphones and 4+1, 1+4 approach synthesis of amino oxadiazolyl and N-(2,5-dimethyl)pyrrolylcoumarins

Ganesh N Alawandi & Manohar V Kulkarni*

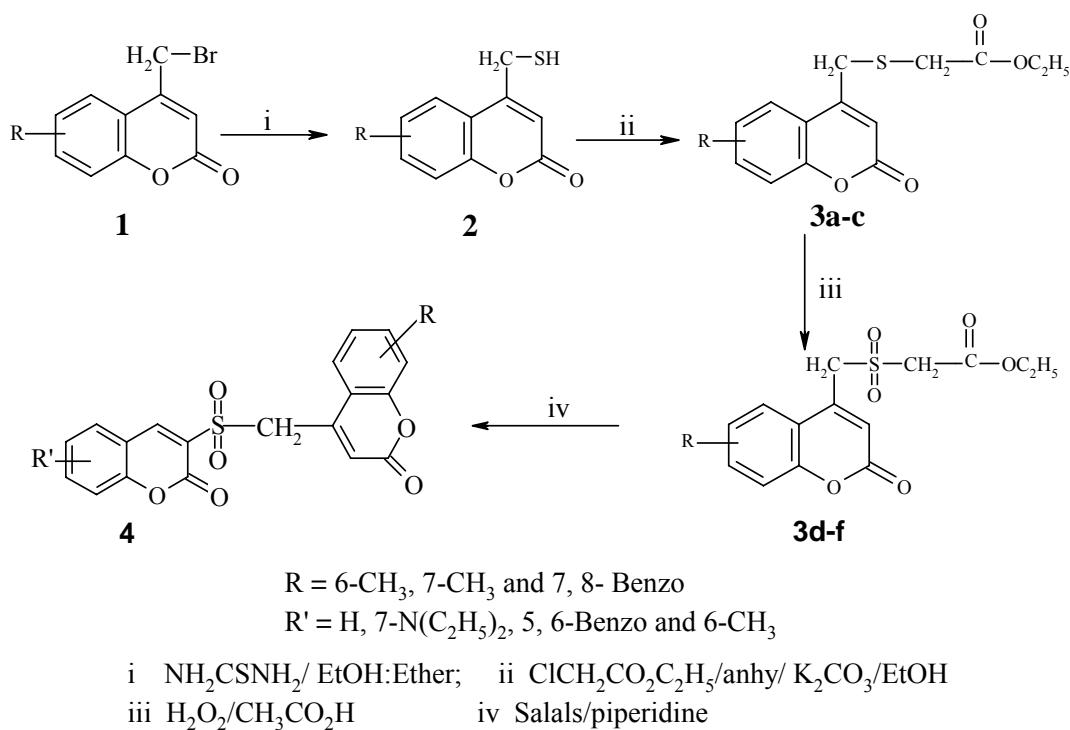
P G Department of Studies in Chemistry, Karnatak University, Dharwad 580 003, India

E-mail: drmvk274@yahoo.co.in

Received 2 September 2004; accepted (revised) 11 April 2005

4-Bromomethylcoumarins **1** on reaction with thiourea gives 4-mercaptomethyl coumarins **2**, which on further reaction with ethyl chloroacetate afford the corresponding sulphide esters **3a-c**. The sulphone esters **3d-f** which are obtained upon oxidation of compounds **3a-c**, undergo cyclisation with salals through Knoevenagel reaction to furnish biscoumarins **4** in good yield. Also esters **3a-f** on reaction with hydrazine hydrate (99.9%) give the corresponding carbohydrazides **5**. Compounds **5** when reacted separately with cyanogen bromide and acetonyl acetone yield amino oxadiazolyl **6** and N-(2,5-dimethyl)pyrrolylcoumarins **7**, respectively. The compounds have been characterized by elemental analysis, IR, ¹H NMR, mass and 2D-HOMO COSY data. All the newly synthesized compounds have been screened for antimicrobial activity against gram-ve bacterium *Escherichia coli*, gram+ve bacterium *Bacillus staphylococci* and fungi *penicillium* and *Aspergillus*.

Keywords: Knoevenagel reaction, bromomethylcoumarins, cyanogen bromide, acetonyl acetone, antimicrobial activity


IPC: Int.Cl.⁷ C 07 D

Compounds containing two coumarin moieties have been found to be extremely useful as anticoagulants, antimicrobials¹ and triplet sensitizers². Bhattacharya *et. al.*³ have isolated biscoumarinyl ether "Lasiocephalin"⁴ from the roots of *Lasiocephalerocephalus*, the structure of which was deduced by Vishwanath *et. al.*⁵. An important feature of this compound is the presence of an aryl ether linkage between C₇ and C₆ position of the two moieties. On the other hand oxadiazoles and pyrroles have been found to exhibit wide ranging pharmacological properties⁶⁻⁹. The present communication reports the multi-step synthesis of biscoumarins linked by C₄ and C₃ position of the two coumarin moieties via methylene sulphone bridge and in continuation of our work on 4-sulphonamidomethyl¹⁰⁻¹⁴ and 4-dichloroacetamidomethyl¹⁵ coumarins, it was thought of considerable interest to synthesise the title compounds.

The required 4-bromomethylcoumarin **1** has been synthesised by the Pechmann cyclisation of various phenols with γ -bromoethylacetacetate. Compounds **1** on reaction with thiourea resulted in the formation of 4-mercaptomethylcoumarins **2**, which on further reaction

with ethyl chloroacetate gave the corresponding sulphide esters **3a-c**.

The attempted cyclisation of sulphide esters **3a-c** with salals did not result in the formation of biscoumarinyl methyl sulphides, this is due to the poor reactivity of two methylene groups. The sulphone esters **3d-f** which are obtained upon oxidation of compounds **3a-c**, undergo cyclisation with salals through Knoevenagel reaction to furnish biscoumarins **4** in good yield (**Scheme I, Table I**). The synthetic potential of resulting sulphanyl-/sulphonyl acetic acid hydrazide derivatives **5** has been utilized in two ways. In one case cyanogen bromide has been used as a source of single carbon and carbohydrazide acts as a source of four atoms reacting through its enol form generating the amino oxadiazole derivatives **6**. In the second case double electrophilic character of acetonyl acetone and the enhanced nucleophilicity of the ¹N-nitrogen of the carbohydrazide have been used to synthesise 2,5-dimethyl-pyrroles **7** (**Scheme II, Table II**). The newly synthesised compounds were characterised by analytical (**Tables I and II**) and spectral data (**Tables III and IV**). The results of antimicrobial screening revealed

Scheme I

Table I — Physical and analytical data of compounds 2a-c, 3a-f and 4a-l

Compd	R	R'	m.p. °C	Yield (%)	Mol.formula	Found (Calcd) %		
						C	H	N
2a	6- CH_3	-	132	89	$\text{C}_{11}\text{H}_{10}\text{O}_2\text{S}$	64.05 (64.07)	4.83 4.85	- (-)
2b	7- CH_3	-	179	86	$\text{C}_{11}\text{H}_{10}\text{O}_2\text{S}$	64.06 (64.07)	4.84 4.85	- (-)
2c	7,8-Benzo	-	165	95	$\text{C}_{14}\text{H}_{10}\text{O}_2\text{S}$	69.41 (69.42)	4.11 4.13	- (-)
3a	6- CH_3	-	95	84	$\text{C}_{15}\text{H}_{16}\text{O}_4\text{S}$	61.66 (61.64)	5.46 5.47	- (-)
3b	7- CH_3	-	88	82	$\text{C}_{15}\text{H}_{16}\text{O}_4\text{S}$	61.66 (61.64)	5.47 5.47	- (-)
3c	7,8-Benzo	-	99	85	$\text{C}_{18}\text{H}_{16}\text{O}_4\text{S}$	65.86 (65.85)	4.88 4.87	- (-)
3d	6- CH_3	-	171	90	$\text{C}_{15}\text{H}_{16}\text{O}_6\text{S}$	55.54 (55.55)	4.90 4.93	- (-)
3e	7- CH_3	-	160	88	$\text{C}_{15}\text{H}_{16}\text{O}_6\text{S}$	55.54 (55.55)	4.90 4.93	- (-)
3f	7,8-Benzo	-	205	95	$\text{C}_{18}\text{H}_{16}\text{O}_6\text{S}$	59.99 (60.00)	4.43 4.44	- (-)
4a	6- CH_3	H	225	80	$\text{C}_{20}\text{H}_{14}\text{O}_6\text{S}$	62.80 (62.82)	3.64 3.66	- (-)
4b	6- CH_3	7-N(C_2H_5) ₂	235	71	$\text{C}_{24}\text{H}_{23}\text{N}_3\text{O}_6\text{S}$	63.55 (63.57)	5.04 5.07	3.07 3.09

— Contd

Table I — Physical and analytical data of compounds **2a-c**, **3a-f** and **4a-l** — *Contd*

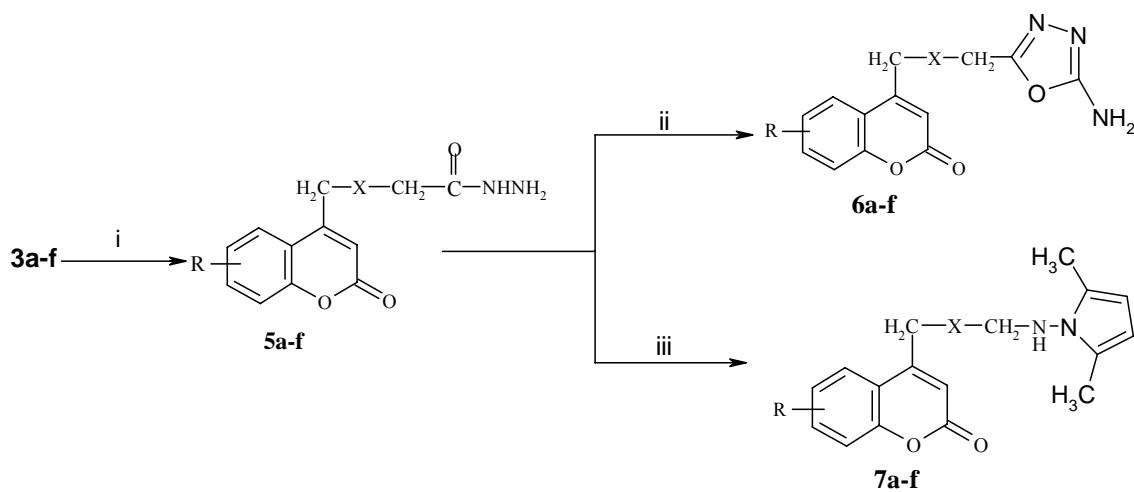
Compd	R	R'	m.p. °C	Yield (%)	Mol.formula	Found (Calcd) %		
						C	H	N
4c	6-CH ₃	5,6-Benzo	285	85	C ₂₄ H ₁₆ O ₆ S	66.64 (66.66)	3.69 3.70	- (-)
4d	6-CH ₃	6-CH ₃	290	82	C ₂₁ H ₁₆ O ₆ S	63.60 (63.63)	4.02 4.04	- (-)
4e	7-CH ₃	H	260	83	C ₂₀ H ₁₄ O ₆ S	62.81 (62.82)	3.65 3.66	- (-)
4f	7-CH ₃	7-N(C ₂ H ₅) ₂	220	74	C ₂₄ H ₂₃ NO ₆ S	63.54 (63.57)	5.05 5.07	3.06 3.09
4g	7-CH ₃	5,6-Benzo	270	83	C ₂₄ H ₁₆ O ₆ S	66.65 (66.66)	3.69 3.70	- (-)
4h	7-CH ₃	6-CH ₃	250	80	C ₂₁ H ₁₆ O ₆ S	63.61 (63.63)	4.01 4.04	- (-)
4i	7,8-Benzo	H	260	80	C ₂₃ H ₁₄ O ₆ S	66.00 (66.02)	3.32 3.34	- (-)
4j	7,8-Benzo	7-N(C ₂ H ₅) ₂	265	71	C ₂₇ H ₂₃ NO ₆ S	66.23 (66.25)	4.69 4.70	2.82 2.80
4k	7,8-Benzo	5,6-Benzo	>300	82	C ₂₇ H ₁₆ O ₆ S	69.21 (69.23)	3.39 3.41	- (-)
4l	7,8-Benzo	6-CH ₃	270	79	C ₂₄ H ₁₆ O ₆ S	66.65 (66.66)	3.68 3.70	- (-)

*Compounds **2** and **4** were recrystallised from ethanol dioxan mixture whereas compound **3** were recrystallised from benzene pet.ether mixture

that majority of the newly synthesised biscoumarins exhibited moderate activity compared to the standard.

Results and Discussion

The IR spectrum of compound **2a** (R = 6-CH₃) exhibited characteristic lactone carbonyl stretching vibration of coumarin at 1716 cm⁻¹ and stretching vibrations of -SH, C=C and C-O-C were observed at 2568, 1574 and 1192 cm⁻¹, respectively. The ¹H NMR spectrum of **2a** displayed a triplet at δ 1.89 due to -SH (D₂O exchangeable), doublet at δ 3.81 due to C₄-CH₂ of coumarin and singlet was observed at δ 3.81. The 6-CH₃, C₃-H, C₅-H, C₇-H and C₈-H protons of coumarin were found to resonate at δ 2.44, 6.46, 7.42, 7.35 and 7.25, respectively (**Table III**).


The mass spectrum by electron ionisation (EI) has been recorded for the compound **2a**, the molecular ion peak was observed at m/z 206 (83%) and base peak at m/z 145 (100%).

The IR spectrum of compound **3a** (R = 6-CH₃) exhibited two carbonyl stretching vibrations at 1727 and 1705 cm⁻¹ due to ester carbonyl and lactone carbonyl of coumarin whereas stretching vibrations of

C=C and C-O-C were observed at 1574 and 1170 cm⁻¹, respectively (**Table III**). The ¹H NMR spectrum of **3a** displayed triplet at δ 1.31 due to ester-CH₃ and quartet at δ 4.22 due to -OCH₂, whereas three singlets at δ 2.44, 3.20 and 3.96 due to 6-CH₃, S-CH₂ and C₄-CH₂ of coumarin, respectively. The C₃-H, C₅-H, C₇-H and C₈-H protons of coumarin were found to resonate at δ 6.42, 7.48, 7.37 and 7.26, respectively (**Table III**).

The IR spectrum of compound **3d** (R = 6-CH₃) exhibited lactone carbonyl stretching vibration of coumarin at 1732 cm⁻¹ whereas stretching vibrations of C=C, C-O-C and SO₂ were observed at 1569, 1153 and 1317 cm⁻¹, respectively (**Table III**). The ¹H NMR spectrum **3d** displayed triplet at δ 1.38 due to ester-CH₃ and quartet at δ 4.36 due to -OCH₂, whereas three singlets at δ 2.45, 4.08 and 4.79 due to 6-CH₃, SO₂-CH₂ and C₄-CH₂ of coumarin, respectively. The C₃-H, C₈-H, C₇-H and C₅-H of coumarin were found to resonate at δ 6.68, 7.28, 7.41 and 7.59, respectively (**Table III**).

The IR spectrum of compound **4h** exhibited the characteristic lactone carbonyl stretching vibration of

Scheme II

Table II — Physical and analytical data of compounds 5a-f, 6a-f and 7a-f

Compd	R	m.p. °C	Yield (%)	Mol.formula	Found (Calcd) %		
					C	H	N
5a	6-CH ₃	155	60	C ₁₃ H ₁₄ N ₂ O ₃ S	56.09 (56.11)	5.01 5.03	10.05 (10.07)
5b	7-CH ₃	150	62	C ₁₃ H ₁₄ N ₂ O ₃ S	56.12 (56.11)	5.02 5.03	10.06 (10.07)
5c	7,8-Benzo	190	65	C ₁₆ H ₁₄ N ₂ O ₃ S	61.15 (61.12)	4.44 4.45	10.91 (9.93)
5d	6-CH ₃	240	92	C ₁₃ H ₁₄ N ₂ O ₅ S	50.30 (50.32)	4.53 4.51	8.89 (8.91)
5e	7-CH ₃	228	93	C ₁₃ H ₁₄ N ₂ O ₅ S	50.30 (50.32)	4.52 4.52	8.90 (8.91)
5f	7,8-Benzo	248	95	C ₁₆ H ₁₄ N ₂ O ₅ S	55.47 (55.49)	4.02 4.04	9.03 (9.03)
6a	6-CH ₃	210	87	C ₁₄ H ₁₃ N ₃ O ₃ S	55.42 (55.44)	4.02 4.02	8.07 (8.09)
6b	7-CH ₃	205	86	C ₁₄ H ₁₃ N ₃ O ₃ S	55.43 (55.44)	4.00 4.02	8.08 (8.09)
6c	7,8-Benzo	228	87	C ₁₇ H ₁₃ N ₃ O ₃ S	50.16 (50.17)	3.80 3.83	13.83 (13.86)
6d	6-CH ₃	230	80	C ₁₄ H ₁₃ N ₃ O ₅ S	50.13 (50.14)	3.86 3.88	12.36 (12.38)
6e	7-CH ₃	213	78	C ₁₄ H ₁₃ N ₃ O ₅ S	50.12 (50.14)	3.87 3.88	12.37 (12.38)
6f	7,8-Benzo	237	80	C ₁₇ H ₁₃ N ₃ O ₅ S	54.96 (54.98)	3.49 3.50	11.31 (11.32)
7a	6-CH ₃	190	70	C ₁₉ H ₂₀ N ₂ O ₃ S	64.02 (64.04)	5.61 5.61	7.85 (7.86)
7b	7-CH ₃	128	73	C ₁₉ H ₂₀ N ₂ O ₃ S	64.03 (64.04)	5.60 5.61	7.86 (7.86)

— Contd

Table II — Physical and analytical data of compounds **5a-f**, **6a-f** and **7a-f** — *Contd*

Compd	R	m.p. °C	Yield (%)	Mol.formula	Found (Calcd) %		
					C	H	N
7c	7,8-Benzo	145	80	C ₂₀ H ₂₀ N ₂ O ₃ S	67.32 (67.34)	5.09 5.10	7.13 7.14)
7d	6-CH ₃	150	85	C ₁₉ H ₂₀ N ₂ O ₅ S	58.54 (58.56)	5.14 5.15	7.19 7.21)
7e	7-CH ₃	135	83	C ₁₉ H ₂₀ N ₂ O ₅ S	58.75 (58.76)	5.13 5.15	7.20 7.21)
7f	7,8-Benzo	198	87	C ₂₂ H ₂₀ N ₂ O ₅ S	62.25 (62.26)	4.70 4.71	6.59 6.60)

*All the above compounds were recrystallised from 1:1 ethanol-dioxan mixture.

Table III — IR and ¹H NMR data of compounds **2a-c**, **3a-f** and **4a-4l**

Compd	R	R'	$\nu_{C=O}$ cm ⁻¹ Lactone	ν_{SO_2} cm ⁻¹	¹ H NMR (δ , ppm, 300 MHz)		
2a	6-CH ₃	-	1716	-	1.89 (t, $J=7.1$ Hz, 1H, -SH), 2.44 (s, 3H, 6-CH ₃), 3.81 (d, $J=7.2$ Hz, 2H, C ₄ -CH ₂), 6.46 (s, 1H, C ₃ -H), 7.42 (s, 1H, C ₅ -H), 7.35 (dd, $J=8.4$ 1.4 Hz, 1H, C ₇ -H), 7.25 (d, $J=8.7$ Hz, 1H, C ₈ -H).		
2b	7-CH ₃	-	1727	-	1.89 (t, $J=7.1$ Hz, 1H, -SH), 2.46 (s, 3H, 7-CH ₃), 3.82 (d, $J=7.2$ Hz, 2H, C ₄ -CH ₂), 6.42 (s, 1H, C ₃ -H), 7.54 (d, $J=7.8$ Hz, 1H, C ₅ -H), 7.15 (d, $J=8.1$ Hz, 1H, C ₆ -H), 7.43 (s, 1H, C ₈ -H).		
2c	7,8-Benzo	-	1705	-	2.06 (t, $J=7.1$ Hz, 1H, -SH), 4.26 (d, $J=7.2$ Hz, 2H, C ₄ -CH ₂), 6.61 (s, 1H, C ₃ -H), 7.28-8.46 (m, 6H, Ar-H).		
3a	6-CH ₃	-	1705 & 1727	-	1.31 (t, $J=7.1$ Hz, 3H, est-CH ₃), 2.44 (s, 3H, 6-CH ₃), 3.20 (s, 2H, S-CH ₂), 3.96 (s, 2H, C ₄ -CH ₂), 4.22 (q, $J=7.1$ Hz, 2H, -OCH ₂), 6.42 (s, 1H, C ₃ -H), 7.48 (s, 1H, C ₅ -H), 7.37 (d, $J=8.4$ Hz, 1H, C ₇ -H), 7.26 (d, $J=8.4$ Hz, C ₈ -H).		
3b	7-CH ₃	-	1705 & 1732	-	1.38 (t, $J=7.1$ Hz, 3H, est-CH ₃), 2.46 (s, 3H, 7-CH ₃), 3.29 (s, 2H, S-CH ₂), 3.94 (s, 2H, C ₄ -CH ₂), 4.24 (q, $J=7.1$ Hz, 2H, -OCH ₂), 6.42 (s, 1H, C ₃ -H), 7.59 (d, $J=8.1$ Hz, 1H, C ₅ -H), 7.13 (d, $J=7.8$ Hz, 1H, C ₆ -H), 7.16 (s, 1H, C ₈ -H).		
3c	7,8-Benzo	-	1711	-	1.32 (t, $J=7.1$ Hz, 3H, est-CH ₃), 3.22 (s, 2H, S-CH ₂), 4.05 (s, 2H, C ₄ -CH ₂), 4.23 (q, $J=7.1$ Hz, 2H, -OCH ₂), 6.51 (s, 1H, C ₃ -H), 7.64-8.59 (m, 6H, Ar-H).		
3d	6-CH ₃	-	1732	1317	1.38 (t, 3H, est.-CH ₃ , $J=7.1$ Hz), 2.45 (s, 3H, 6-CH ₃), 4.08 (s, 2H, SO ₂ -CH ₂), 4.26 (q, 2H, -OCH ₂), 4.79 (s, 2H, C ₄ -CH ₂), 6.68 (s, 1H, C ₃ -H), 7.59 (s, 1H, C ₅ -H), 7.41 (d, $J=8.1$ Hz, 1H, C ₇ -H), 7.28 (d, $J=7.8$ Hz, 1H, C ₈ -H).		
3e	7-CH ₃	-	1732 & 1711	1328	1.36 (t, 3H, est.-CH ₃ , $J=7.1$ Hz), 2.47 (s, 3H, 7-CH ₃), 4.07 (s, 2H, SO ₂ -CH ₂), 4.31 (q, $J=7.1$ Hz, 2H, -OCH ₂), 4.79 (s, 2H, C ₄ -CH ₂), 6.67 (s, 1H, C ₃ -H), 7.88 (d, $J=8.1$ Hz, 1H, C ₅ -H), 7.30 (s, 1H, C ₈ -H), 7.28 (d, $J=7.8$ Hz, 1H, C ₆ -H).		
3f	7,8-Benzo	-	1705	1323	1.40 (t, $J=7.1$ Hz, 3H, est.-CH ₃), 4.26 (q, $J=7.1$ Hz, 2H, O-CH ₂), 4.68 (s, 2H, SO ₂ -CH ₂), 5.13 (s, 2H, C ₄ -CH ₂), 6.68 (s, 1H, C ₃ -H), 7.73-8.39 (m, 3H, Ar-H).		
4a	6-CH ₃	H	1738	1317	2.46 (s, 3H, 6-CH ₃), 4.97 (s, 2H, C ₄ -CH ₂), 6.48 (s, 1H, C ₃ -H), 8.58 (s, 1H, C ₄ -H), 7.22-7.78 (m, 7H, Ar-H).		
4b	6-CH ₃	7-N(C ₂ H ₅) ₂	1716	1339	1.26 (t, $J=7.1$ Hz, 6H, two -CH ₃), 2.44 (s, 3H, 6-CH ₃), 3.51 (q, $J=7.1$ Hz, 4H, N-CH ₂), 4.92 (s, 2H, C ₄ -CH ₂), 6.46 (s, 1H, C ₃ -H), 8.31 (s, 1H, C ₄ -H), 7.19-7.72 (m, 6H, Ar-H).		

— *Contd*

Table III – IR and ¹H NMR data of compounds **2a-c**, **3a-f** and **4a- 4l**–*Contd*

Compd	R	R'	$\nu_{C=O}$ cm ⁻¹ Lactone	ν_{SO_2} cm ⁻¹	¹ H NMR (δ , ppm, 300 MHz)
4c	6-CH ₃	5,6-Benzo	1722	1295	2.45 (s, 3H, 6-CH ₃), 5.13 (s, 2H, C ₄ -CH ₂), 6.57 (s, 1H, C ₃ -H), 9.36 (s, 1H, C ₄ -H), 7.21-8.47 (m, 9H, Ar-H).
4d	6-CH ₃	6-CH ₃	1743	1312	2.45 and 2.47 (2s, 6H, Ar-CH ₃), 5.06 (s, 2H, C ₄ -CH ₂), 6.72 (s, 1H, C ₃ -H), 8.67 (s, 1H, C ₄ -H), 7.32-7.75 (m, 6H, Ar-H).
4e	7-CH ₃	H	1732	1312	2.46 (s, 3H, 7-CH ₃), 4.96 (s, 2H, C ₄ -CH ₂), 6.43 (s, 1H, C ₃ -H), 8.57 (s, 1H, C ₄ -H), 7.15-7.81 (m, 7H, Ar-H).
4f	7-CH ₃	7-N(C ₂ H ₅) ₂	1732	1335	1.26 (t, J =7.1 Hz, 6H, two-CH ₃), 2.45 (s, 3H, 7-CH ₃), 3.50 (q, J =7.1 Hz, 4H, N-CH ₂), 4.90 (s, 2H, C ₄ -CH ₂), 6.40 (s, 1H, C ₃ -H), 8.30 (s, 1H, C ₄ -H), 7.12-7.85 (m, 6H, Ar-H).
4g	7-CH ₃	5,6-Benzo	1738	1313	2.46 (s, 3H, 7-CH ₃), 5.10 (s, 2H, C ₄ -CH ₂), 6.58 (s, 1H, C ₃ -H), 9.36 (s, 1H, C ₄ -H), 7.18-8.49 (m, 9H, Ar-H).
4h	7-CH ₃	6-CH ₃	1732	1317	2.45 (s, 6H, Ar-CH ₃), 5.04 (s, 2H, C ₄ -CH ₂), 6.46 (s, 1H, C ₃ -H), 8.72 (s, 1H, C ₄ -H), 7.14-7.85 (m, 6H, Ar-H).
4i	7,8-Benzo	H	1738	1312	5.13 (s, 2H, C ₄ -CH ₂), 6.63 (s, 1H, C ₃ -H), 8.73 (s, 1H, C ₄ -H), 7.42-8.53 (m, 10H, Ar-H).
4j	7,8-Benzo	7-N(C ₂ H ₅) ₂	1727	1306	1.26 (t, J =7.1 Hz, 6H two-CH ₃), 3.49 (q, J =7.1 Hz, 4H, N-CH ₂), 5.01 (s, 2H, C ₄ -CH ₂), 6.51 (s, 1H, C ₃ -H), 8.50 (s, 1H, C ₄ -H), 7.37-8.52 (m, 9H, Ar-H).
4k	7,8-Benzo	5,6-Benzo	1722	1315	5.19 (s, 2H, C ₄ -CH ₂), 6.53 (s, 1H, C ₃ -H), 8.60 (s, 1H, C ₄ -H), 7.55-8.59 (m, 12H, Ar-H).
4l	7,8-Benzo	6-CH ₃	1732	1312	2.43 (s, 3H, 6-CH ₃), 5.14 (s, 2H, C ₄ -CH ₂), 6.63 (s, 1H, C ₃ -H), 8.70 (s, 1H, C ₄ -H), 7.35-8.50 (m, 9H, Ar-H).

In compound **2a- c**, SH were D₂O exchanged

coumarin at 1732 cm⁻¹ whereas stretching vibrations of C=C, -SO₂ and C-O-C were observed at 1569, 1317 and 1153 cm⁻¹, respectively (**Table III**). The ¹H NMR spectrum **4h** displayed two singlets at δ 2.46 and 5.04 due to two aromatic -CH₃ groups and C₄-CH₂ of coumarin, respectively, whereas singlet at δ 6.46 due to C₃-H of coumarin and C₄-H of coumarin were found to resonate to δ 8.72. The aromatic protons were found to resonate in the range δ 7.14-7.85 (**Table III**). Further, the proton-proton coupling has been studied by 2-D HOMO COSY spectrum which displayed two singlets at δ 2.40 and 2.46 due to 6-CH₃ and 7'-CH₃ of coumarin, and another singlet at δ 5.10 due to C₄-CH₂ of coumarin whereas C₃'-H of coumarin at δ 6.50, C₄-H at δ 8.90, doublet at δ 7.24 due to C₈-H and C₈'-H, and another doublet at δ 7.44 due to C₆'-H, doublet of doublet at δ 7.65 due to C₇-H, singlet at δ 7.84 due to C₅-H and doublet at δ 7.87 due to C₅'-H.

The IR spectrum of compound **5b** exhibited the characteristic lactone carbonyl stretching band of coumarin at 1710 cm⁻¹ and amide carbonyl at 1644 cm⁻¹. The bands at 3342 and 3305 cm⁻¹ were due to asymmetric and symmetric stretching vibration of NH₂, whereas stretching vibrations of =C-H and C-O-

C were observed at 3049 and 1153 cm⁻¹, respectively (**Table IV**). Its ¹H NMR spectrum displayed three singlets at δ 2.54, 3.14 and 3.97 attributed to 7-CH₃, S-CH₂ and C₄-CH₂ protons of coumarin. The C₃-H of coumarin was found to resonate at δ 6.43 as a singlet, C₅-H at δ 7.60 as a doublet whereas C₆-H and C₈-H at δ 7.13 as a overlapping doublet. The -NH and -NH₂ protons of carbohydrazide were found to resonate at δ 9.10 and 3.52 and have been D₂O exchanged (**Table IV**).

IR spectrum of compound **6a** exhibited the characteristic lactone carbonyl of coumarin at 1719 cm⁻¹ and peaks at 3325 and 3127 cm⁻¹ due to asymmetric and symmetric stretching vibration of =NH whereas =C-H and C-O-C were observed at 2924 and 1194 cm⁻¹, respectively (**Table IV**). Its ¹H NMR spectrum displayed three singlets at δ 2.43, 3.73 and 3.92 due to 6-CH₃, S-CH₂ and C₄-CH₂ of coumarin. The C₃-H of coumarin was found to resonate at δ 6.49 as a singlet, C₅-H at δ 7.77 as singlet, C₇-H at δ 7.37 as a doublet and C₈-H at δ 7.22 as doublet. The -NH₂ protons of oxadiazole were found to resonate at δ 6.76 as a broad singlet, disappeared on addition of D₂O (**Table IV**).

Table IV – IR and ^1H NMR data of compounds **5a-f**, **6a-f** and **7a-f**

Compd	R	$\nu_{\text{NH}} \text{cm}^{-1}$ Asym	$\nu_{\text{NH}} \text{cm}^{-1}$ Sym	$\nu_{\text{C=O}} \text{cm}^{-1}$ Lactone	$\nu_{\text{C=O}} \text{cm}^{-1}$ Amide	^1H NMR (δ , ppm, 300 MHz)
5a	6-CH ₃	3305	3289	1727	1645	2.43 (s, 3H, 6-CH ₃), 3.15 (s, 2H, S-CH ₂), 3.99 (s, 2H, C ₄ -CH ₂), 6.48 (s, 1H, C ₃ -H), 7.21 (d, $J=8.4$ Hz, 1H, C ₈ -H), 7.36 (dd, $J=1.5$ and 9Hz, 1H, C ₇ -H), 7.52 (d, $J=1.4$ Hz, 1H, C ₅ -H), 9.16 (br, 1H, CONH), 3.06 (br, 2H, NH ₂).
5b	7-CH ₃	3305	3290	1710	1644	2.45 (s, 3H, 7-CH ₃), 3.15 (s, 2H, S-CH ₂), 3.97 (s, 2H, C ₄ -CH ₂) 6.43 (s, 1H, C ₃ -H), 7.13 (d, $J=6.3$ Hz, 2H, C ₆ -H and C ₈ -H), 7.60 (d, $J=8.4$ Hz, 1H, C ₅ -H), 3.52 (br, 2H, NH ₂), 9.10 (br, 1H, CONH ₂).
5c	7,8-Benzo	3311	3278	1716	1645	3.16 (s, 2H, S-CH ₂), 4.09 (s, 2H, C ₄ -CH ₂), 6.58 (s, 1H, C ₃ -H), 7.61-8.51 (m, 6H, Ar-H), 3.46 (br, 2H, NH ₂), 9.20 (br, 1H, -CONH).
5d	6-CH ₃	3295	3267	1711	1645	2.46 (s, 3H, 6-CH ₃), 4.14 (s, 2H, SO ₂ -CH ₂), 4.95 (s, 2H, C ₄ -CH ₂), 6.63 (s, 1H, C ₃ -H), 7.25 (d, $J=8.4$ Hz, 1H, C ₈ -H), 7.35 (d, $J=8.7$ Hz, 1H, C ₇ -H), 7.50 (s, 1H, C ₅ -H), 9.80 (br, 1H, -CONH).
5e	7-CH ₃	3284	3262	1716	1650	2.45 (s, 3H, 7-CH ₃), 4.15 (s, 2H, SO ₂ -CH ₂), 4.96 (s, 2H, C ₄ -CH ₂), 6.62 (s, 1H, C ₃ -H), 7.1 (d, $J=9$ Hz, 2H, C ₆ -H and C ₈ -H), 7.78 (d, $J=7.8$ Hz, C ₅ -H), 9.70 (s, 1H, -CONH).
5f	7,8-Benzo	3328	3306	1716	1667	4.19 (s, 2H, SO ₂ -CH ₂), 5.09 (s, 2H, C ₄ -CH ₂), 6.80 (s, 1H, C ₃ -H), 7.66-8.53 (m, 6H, Ar-H), 9.75 (br, 1H, -CONH).
6a	6-CH ₃	3325	3127	1719	-	2.43 (s, 3H, 6-CH ₃), 3.73 (s, 2H, S-CH ₂), 3.92 (s, 2H, C ₄ -CH ₂), 6.49 (s, 1H, C ₃ -H), 7.77 (s, 1H, C ₅ -H), 7.37 (d, $J=8.9$ Hz, 1H, C ₇ -H), 7.22 (d, $J=8.7$ Hz, 1H, C ₈ -H), 6.76 (s, 2H, NH ₂).
6b	7-CH ₃	3273	3076	1719	-	2.46 (s, 3H, 7-CH ₃), 3.70 (s, 2H, S-CH ₂), 3.89 (s, 2H, C ₄ -CH ₂) 6.46 (s, 1H, C ₃ -H), 7.14 (d, $J=3.9$ Hz, 1H, C ₈ -H), 7.58 (d, $J=8.4$ Hz, 2H, C ₆ -H and C ₅ -H), 6.55 (s, 2H, NH ₂).
6c	7,8-Benzo	3331	3311	1721	-	3.86 (s, 2H, S-CH ₂), 4.19 (s, 2H, C ₄ -CH ₂), 6.54 (s, 1H, C ₃ -H), 7.13-7.97 (m, 6H, Ar-H), 6.76 (s, 2H, NH ₂).
6d	6-CH ₃	3265	3075	1721	-	2.43 (s, 3H, 6-CH ₃), 4.89 (s, 2H, SO ₂ -CH ₂), 4.93 (s, 2H, C ₄ -CH ₂), 6.66 (s, 1H, C ₃ -H), 7.22 (d, $J=7.5$ Hz, 1H, C ₈ -H), 7.39 (d, $J=8.1$ Hz, C ₇ -H), 7.68 (s, 1H, C ₅ -H), 7.06 (s, 2H, NH ₂).
6e	7-CH ₃	3260	3073	1718	-	2.42 (s, 3H, 7-CH ₃), 4.86 (s, 2H, SO ₂ -CH ₂), 4.92 (s, 2H, C ₄ -CH ₂), 6.67 (s, 1H, C ₃ -H), 7.17 (d, $J=8.7$ Hz, 2H, C ₆ -H and C ₇ -H), 7.80 (d, $J=7.8$ Hz, 1H, C ₅ -H), 6.95 (s, 2H, NH ₂).
6f	7,8-Benzo	3430	3339	1729	-	5.09 (s, 2H, SO ₂ -CH ₂), 5.10 (s, 2H, C ₄ -CH ₂), 6.76 (s, 1H, C ₃ -H), 7.30-8.63 (m, 6H, Ar-H), 7.20 (s, 2H, NH ₂).
7a	6-CH ₃	3283		1719	1705	2.14 (s, 6H, two of pyrrole-CH ₃), 2.43 (s, 3H, 6-CH ₃), 3.34 (s, 2H, S-CH ₂), 4.00 (s, 2H, C ₄ -CH ₂), 5.80 (s, 2H, pyrrole C ₃ and C ₄ -H of pyrrole), 6.48 (s, 1H, C ₃ -H), 7.21 (d, $J=8.1$ Hz, 1H, C ₇ -H), 7.36 (d, $J=7.8$ Hz, 1H, C ₈ -H), 7.46 (s, 1H, C ₅ -H), 8.89 (s, 1H, CONH).
7b	7-CH ₃	3282		1715	-	2.10 (s, 6H, two of pyrrole-CH ₃), 2.45 (s, 3H, 7-CH ₃), 3.26 (s, 2H, S-CH ₂), 4.05 (s, 2H, C ₄ -CH ₂), 5.73 (s, 2H, C ₃ and C ₄ -H of pyrrole), 6.48 (s, 1H, C ₃ -H), 7.13 (d, $J=6.9$ Hz, 2H, C ₈ and C ₆ -H of coum), 7.62 (d, $J=8.7$ Hz, 1H, C ₅ -H of coum), 10.56 (s, 1H, -CONH).
7c	7,8-Benzo	3235		1727	1661	2.13 (s, 6H two of pyrrole-CH ₃), 3.53 (s, 2H, S-CH ₃), 4.12 (s, 2H, C ₄ -CH ₂), 5.82 (s, 2H pyrrole C ₃ and C ₄ -H), 6.59 (s, 1H, C ₃ -H), 7.63-8.56 (m, 6H, Ar-H), 10.61 (s, 1H, -CONH).
7d	6-CH ₃	3235		1738	1705	2.13 (s, 6H, two of pyrrole-CH ₃), 2.41 (s, 3H, 6-CH ₃), 4.35 (s, 2H, SO ₂ -CH ₂), 4.92 (s, 2H, C ₄ -CH ₂), 5.77 (s, 2H, pyrrole C ₃ and C ₄ -H), 6.67 (s, 1H, C ₃ -H), 7.23 (d, $J=8.1$ Hz, 1H, C ₈ -H of coum), 7.38 (d, $J=7.8$ Hz, 1H, C ₇ -H), 7.62 (s, 1H, C ₅ -H), 11.14 (s, 1H, -CONH).
7e	7-CH ₃	3278		1727	1672	2.13 (s, 6H two of pyrrole-CH ₃), 2.46 (s, 3H, 7-CH ₃), 4.32 (s, 2H, SO ₂ -CH ₂), 4.90 (s, 2H, C ₄ -CH ₂), 5.78 (s, 2H, C ₃ and C ₄ -H of pyrrole), 6.64 (s, 1H, C ₃ -H), 7.14 (d, $J=6.9$ Hz, 2H, C ₈ and C ₆ -H of coum), 7.71 (d, $J=8.4$ Hz, 1H C ₅ -H), 11.12 (s, 1H, -CONH).
7f	7,8-Benzo	3289		1727	1678	2.12 (s, 6H two of pyrrole CH ₃), 4.55 (s, 2H, -SO ₂ CH ₂), 5.10 (s, 2H C ₄ -CH ₂), 5.83 (s, 2H, C ₃ and C ₄ -H of pyrrole), 6.60 (s, 1H, C ₃ -H of), 7.71-8.76 (m, 6H Ar-H), 11.15 (s, 1H, -CONH).

Compound **5a-7c** were D₂O exchanged and **7d-f** were precipitated

In the (EI) mass spectrum of oxadiazole **6a** ($R = 6\text{-CH}_3$). The molecular ion peak was observed at m/z 303 and base peak at m/z 99.

The IR spectrum of **7b** ($R = 7\text{-CH}_3$) exhibited two strong carbonyl stretching bands at 1719 and 1705 cm^{-1} due to lactone carbonyl of coumarin and amide carbonyl, respectively. The $-\text{NH}$, $=\text{C-H}$, and C-O-C stretching vibrations were observed at 3283, 2921 and 1144 cm^{-1} , respectively. The ^1H NMR spectrum of **7b** displayed four singlets at δ 2.10, 2.45, 3.26 and 4.05 due to two $-\text{CH}_3$ of pyrrole, 7- CH_3 of coumarin, S-CH_2 , and $\text{C}_4\text{-CH}_2$ of coumarin, respectively. The $\text{C}_3\text{-H}$ and $\text{C}_4\text{-H}$ of pyrrole were found to resonate at δ 5.73 and $\text{C}_3\text{-H}$ of coumarin resonated at δ 6.48 as singlet, $\text{C}_5\text{-H}$ as a doublet at δ 7.62 and $\text{C}_6\text{-H}$ as doublet at δ 7.13 as a singlet at δ 7.13, whereas $-\text{NH}$ of amide was found to resonate at δ 10.56 as a singlet and was D_2O exchanged (**Table IV**).

The mass spectrum of **7a** has been recorded by electron ionisation (EI) and the molecular ion peak was observed at m/z 356 which itself is the base peak.

Antimicrobial activity

Newly synthesised compounds have been screened for antimicrobial activity against Gram-negative bacterium *Escherichia coli*, Gram-positive bacterium *Bacillus staphylococci* using *Norfloxacin* as standard and fungi *Penicillium*, *Aspergillus* using *Griseofulvin* as standard, nutrient agar was used as culture medium. Test solution was prepared in 1 mL of DMF and 0.1 mL of this solution was used for testing by cup-plate method¹⁶. The zones of inhibition formed were measured in mm and the results revealed that all the compounds were moderately active against bacteria and fungi.

Experimental Section

Melting points were recorded on a mettler FPI instrument and are uncorrected. IR spectra were recorded on a nicolet impact spectrometer using KBr pellets; and ^1H NMR spectra on a Bruker 300 MHz using CDCl_3 , $\text{DMSO-}d_6$ and D_2O as solvents.

Thiourea, ethylchloroacetate, salicylaldehyde, 4-N, N-diethylamino salicylaldehyde and naphthalaldehyde were commercial samples and were used after purification.

Synthesis of 4-mercaptomethylchromen-2-ones
2. General procedure. An equimolar mixture of 4-bromomethylcoumarins **1** (0.01 mole) and thiourea (0.01 mole) was stirred in ethanol-ether (1:1) mixture

at room temperature for 2 hr and then refluxed on a steam-bath for 4 hr and left overnight. The separated solid was filtered, washed with excess aq. ethanol and dissolved in 5% sodium hydroxide solution (15 mL), filtered and filtrate was re-precipitated with dil. HCl. The separated solid was filtered, washed with excess of water, dried and recrystallised from suitable solvent (**Table I**).

Synthesis of (2-oxo-2H-chromen-4-ylmethylsulphonyl)acetic acid ethyl esters 3a-c. General procedure. Compound **2** (0.01 mole) was refluxed in super dried ethanol in the presence of anhyd. potassium carbonate (0.01 mole) for 10 min then an equimolar quantity of ethyl chloroacetate (0.01 mole) was added from the top of the condenser, attached with calcium chloride guard tube. The heating was continued for 5-6 hr. After cooling, the dark green coloured reaction mixture was poured into crushed ice which was previously concentrated. Separated solid was acidified with dil. HCl, filtered, dried and recrystallised from suitable solvent (**Table I**).

Synthesis of (2-oxo-2H-chromen-4-ylmethylsulphonyl)acetic acid ethyl esters 3d-f. General method. Esters **3a-c** (1.5 g) were suspended in gl. acetic acid (7 mL) and hydrogen peroxide solution (5 mL, 30%) was added in portions to the cooled suspension. After the addition was over the reaction mixture was allowed to attain room temperature and heated on a water-bath for 2 hr. The reaction mixture was cooled and the separated solid was filtered and washed with excess ethanol, dried and recrystallised from suitable solvent (**Table I**).

Synthesis of 3-coumarinyl-(4'-coumarinomethyl)sulphones 4. General procedure. A mixture of **3d-f** (0.01 mole) and salals (0.01 mole) was stirred overnight in ethanol in the presence of catalytic amount of piperidine. The separated solid was filtered, washed with excess ethanol, dried and recrystallised from suitable solvent (**Table I**).

Synthesis of (2-oxo-2H-chromen-4-ylmethylsulphonyl)acetic acid hydrazides 5. General procedure. A mixture of **3a-f** (0.01 mole) and hydrazine hydrate (0.02 mole, 99.9%) was refluxed on a water-bath for 4-5 hr in ethanol and was concentrated to half of its original volume and left overnight. The separated solid was filtered, washed with excess ethanol and recrystallised from a suitable solvent (**Table II**).

Synthesis of 4-(5-amino-[1,3,4]oxadiazol-2-ylmethylsulphonyl/sulphonyl-methyl)chromen-2-ones
6. General procedure. A mixture of **5** (0.01 mole) and cyanogen bromide (0.012 mole) in methanol was

heated on an oil-bath for 3 hr at 50-60°C. The resulting clear solution was filtered and the filtrate was neutralised with sodium bicarbonate solution. The separated solid was filtered, washed with excess water, dried and recrystallised from a suitable solvent (**Table II**).

Synthesis of N-(2,5-dimethyl-pyrrol-1-yl)-2-(2-oxo-2H-chromen-4-ylmethyl sulphanyl/sulphonyl)-acetamides 7. To a suspension of **5** (0.01 mole) in absolute ethanol, acetyl acetone (0.02 mole) was added and refluxed on a water-bath for 2 hr in the presence of catalytic amount of acetic acid. The solvent was removed by rotary evaporator and left overnight. The separated solid was washed with excess ethanol, dried and recrystallised from a suitable solvent (**Table II**).

Acknowledgement

The authors thank the USIC, Karnatak University, Dharwad, the RSIC/CIL, Punjab University, Chandigarh for providing spectral data. One of the authors (GNA) is grateful to Karnatak University, Dharwad for the award of research studentship.

References

- 1 Bachman G L, *Chem Abstr*, **73**, **1970**, 130889.
- 2 Speccht D P, Peter A, Martic R & Farid S, *Tetrahedron*, **38**, **1982**, 1203.
- 3 Bhattacharya A K & Das S C, *Chem Ind*, (London), **31**, **1971**, 885.
- 4 Bandopadhyay M, Pardeshi N P & Seshadri T R, *Indian J Chem*, **12**, **1974**, 295.
- 5 Viswanathan N & Balakrishnan V, *Indian J Chem*, **12**, **1974**, 450.
- 6 Ramalingam T, Deshmukh A A, Sattur P B, Sheth V K & Naik S R, *J Indian Chem Soc*, **58**, **1981**, 269.
- 7 Kachroo P L, Gupta R, Gupta S C & Gupta A K, *Natl Acad Sci Lett (India)*, **13**, **1991**, 125; *Chem Abstr*, **115**, **1991**, 49539q.
- 8 Jaeggi K A, Ostermayer F & Schroeter H, *Ger Offen*, **2**, **1974**, 313, 409; *Chem Abstr*, **82**, **1975**, 4119m
- 9 Ramalingam T & Sattur P B, *Indian J Chem*, **26B**, **1987**, 1204.
- 10 Ichikawa M & Ichibagase H, *Yakugaku Zasshi*, **86**, **1966**, 1064; *Chem Abstr*, **66**, **1967**, 10486g
- 11 Ichibagase T, Ichikawa M & Nagasaki S, *Japan* 6195; *Chem Abstr*, **67**, **1968**, 43681y.
- 12 Ichikawa M & Ichibagase H, *Chem Pharm Bull*, **17**(11), **1969**, 2384; *Chem Abstr*, **72**, **1970**, 551604.
- 13 Ichibagase T, Ichikawa M & Nagasaki S, *Japan* 296 7019; *Chem Abstr*, **73**, **1970**, 66434h
- 14 Bahmann G L, *Chem Abstr*, **73**, **1970**, 13088g.
- 15 Bevinkatti H S & Badiger V V, *J Heterocyclic Chem*, **19**, **1982**, 69.
- 16 Seely H W & Van Demark P, *J Microbes in action: A laboratory manual of microbiology*, (D B Taraporevala Sons & Co Pvt Ltd, Bombay), **1975**, pp. 55, 80.